Cargando…
Unsupervised generative and graph representation learning for modelling cell differentiation
Using machine learning techniques to build representations from biomedical data can help us understand the latent biological mechanism of action and lead to important discoveries. Recent developments in single-cell RNA-sequencing protocols have allowed measuring gene expression for individual cells...
Autores principales: | Bica, Ioana, Andrés-Terré, Helena, Cvejic, Ana, Liò, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300092/ https://www.ncbi.nlm.nih.gov/pubmed/32555334 http://dx.doi.org/10.1038/s41598-020-66166-8 |
Ejemplares similares
-
CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
por: Buterez, David, et al.
Publicado: (2021) -
Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases
por: Scherer, Paul, et al.
Publicado: (2021) -
Unsupervised Event Graph Representation and Similarity Learning on Biomedical Literature
por: Frisoni, Giacomo, et al.
Publicado: (2021) -
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022) -
Adversarial generation of gene expression data
por: Viñas, Ramon, et al.
Publicado: (2021)