Cargando…
A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features
Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overc...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300291/ https://www.ncbi.nlm.nih.gov/pubmed/32595465 http://dx.doi.org/10.3389/fninf.2020.00025 |
_version_ | 1783547559218774016 |
---|---|
author | Castellazzi, Gloria Cuzzoni, Maria Giovanna Cotta Ramusino, Matteo Martinelli, Daniele Denaro, Federica Ricciardi, Antonio Vitali, Paolo Anzalone, Nicoletta Bernini, Sara Palesi, Fulvia Sinforiani, Elena Costa, Alfredo Micieli, Giuseppe D'Angelo, Egidio Magenes, Giovanni Gandini Wheeler-Kingshott, Claudia A. M. |
author_facet | Castellazzi, Gloria Cuzzoni, Maria Giovanna Cotta Ramusino, Matteo Martinelli, Daniele Denaro, Federica Ricciardi, Antonio Vitali, Paolo Anzalone, Nicoletta Bernini, Sara Palesi, Fulvia Sinforiani, Elena Costa, Alfredo Micieli, Giuseppe D'Angelo, Egidio Magenes, Giovanni Gandini Wheeler-Kingshott, Claudia A. M. |
author_sort | Castellazzi, Gloria |
collection | PubMed |
description | Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD–AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD–AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations. |
format | Online Article Text |
id | pubmed-7300291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73002912020-06-26 A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features Castellazzi, Gloria Cuzzoni, Maria Giovanna Cotta Ramusino, Matteo Martinelli, Daniele Denaro, Federica Ricciardi, Antonio Vitali, Paolo Anzalone, Nicoletta Bernini, Sara Palesi, Fulvia Sinforiani, Elena Costa, Alfredo Micieli, Giuseppe D'Angelo, Egidio Magenes, Giovanni Gandini Wheeler-Kingshott, Claudia A. M. Front Neuroinform Neuroscience Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD–AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD–AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations. Frontiers Media S.A. 2020-06-11 /pmc/articles/PMC7300291/ /pubmed/32595465 http://dx.doi.org/10.3389/fninf.2020.00025 Text en Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Castellazzi, Gloria Cuzzoni, Maria Giovanna Cotta Ramusino, Matteo Martinelli, Daniele Denaro, Federica Ricciardi, Antonio Vitali, Paolo Anzalone, Nicoletta Bernini, Sara Palesi, Fulvia Sinforiani, Elena Costa, Alfredo Micieli, Giuseppe D'Angelo, Egidio Magenes, Giovanni Gandini Wheeler-Kingshott, Claudia A. M. A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
title | A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
title_full | A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
title_fullStr | A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
title_full_unstemmed | A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
title_short | A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
title_sort | machine learning approach for the differential diagnosis of alzheimer and vascular dementia fed by mri selected features |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300291/ https://www.ncbi.nlm.nih.gov/pubmed/32595465 http://dx.doi.org/10.3389/fninf.2020.00025 |
work_keys_str_mv | AT castellazzigloria amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT cuzzonimariagiovanna amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT cottaramusinomatteo amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT martinellidaniele amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT denarofederica amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT ricciardiantonio amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT vitalipaolo amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT anzalonenicoletta amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT berninisara amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT palesifulvia amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT sinforianielena amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT costaalfredo amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT micieligiuseppe amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT dangeloegidio amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT magenesgiovanni amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT gandiniwheelerkingshottclaudiaam amachinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT castellazzigloria machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT cuzzonimariagiovanna machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT cottaramusinomatteo machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT martinellidaniele machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT denarofederica machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT ricciardiantonio machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT vitalipaolo machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT anzalonenicoletta machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT berninisara machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT palesifulvia machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT sinforianielena machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT costaalfredo machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT micieligiuseppe machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT dangeloegidio machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT magenesgiovanni machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures AT gandiniwheelerkingshottclaudiaam machinelearningapproachforthedifferentialdiagnosisofalzheimerandvasculardementiafedbymriselectedfeatures |