Cargando…
Capturing functional epigenomes for insight into metabolic diseases
BACKGROUND: Metabolic diseases such as obesity are known to be driven by both environmental and genetic factors. Although genome-wide association studies of common variants and their impact on complex traits have provided some biological insight into disease etiology, identified genetic variants hav...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300388/ https://www.ncbi.nlm.nih.gov/pubmed/32199819 http://dx.doi.org/10.1016/j.molmet.2019.12.016 |
Sumario: | BACKGROUND: Metabolic diseases such as obesity are known to be driven by both environmental and genetic factors. Although genome-wide association studies of common variants and their impact on complex traits have provided some biological insight into disease etiology, identified genetic variants have been found to contribute only a small proportion to disease heritability, and to map mainly to non-coding regions of the genome. To link variants to function, association studies of cellular traits, such as epigenetic marks, in disease-relevant tissues are commonly applied. SCOPE OF THE REVIEW: We review large-scale efforts to generate genome-wide maps of coordinated epigenetic marks and their utility in complex disease dissection with a focus on DNA methylation. We contrast DNA methylation profiling methods and discuss the advantages of using targeted methods for single-base resolution assessments of methylation levels across tissue-specific regulatory regions to deepen our understanding of contributing factors leading to complex diseases. MAJOR CONCLUSIONS: Large-scale assessments of DNA methylation patterns in metabolic disease-linked study cohorts have provided insight into the impact of variable epigenetic variants in disease etiology. In-depth profiling of epigenetic marks at regulatory regions, particularly at tissue-specific elements, will be key to dissect the genetic and environmental components contributing to metabolic disease onset and progression. |
---|