Cargando…
Synthesis of 1,4-Biphenyl-triazole Derivatives as Possible 17β-HSD1 Inhibitors: An in Silico Study
[Image: see text] Triazoles occupy an important position in medicinal chemistry because of their various biological activities. The structural features of 1,2,3-triazoles enable them to act as a bioisostere of different functional groups such as amide, ester, carboxylic acid, and heterocycle, being...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301541/ https://www.ncbi.nlm.nih.gov/pubmed/32566872 http://dx.doi.org/10.1021/acsomega.0c01519 |
Sumario: | [Image: see text] Triazoles occupy an important position in medicinal chemistry because of their various biological activities. The structural features of 1,2,3-triazoles enable them to act as a bioisostere of different functional groups such as amide, ester, carboxylic acid, and heterocycle, being capable of forming hydrogen bonds and π–π interactions or coordinate metal ions with biological targets. In this work, the synthesis of 1,2,3-triazole derivatives via copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) is reported. Overexpression of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is often found in breast cancer cells. Molecular similarity and docking analysis were used to evaluate the potential inhibitory activity of 1,2,3-triazoles synthesized over 17β-HSD1 for the treatment of mammary tumors. Our in silico analysis shows that compounds 4c, 4d, 4f, 4g, and 4j are good molecular scaffold candidates as 17β-HSD1 inhibitors. |
---|