Cargando…

Neuroprotective Effect of Brazilin on Amyloid β (25–35)-Induced Pathology in a Human Neuroblastoma Model

[Image: see text] Until the recent past, the sole exemplar of proteins as infectious agents leading to neurodegenerative disorders remained the prion protein. Since then, the self-seeding mechanism characteristic of the prion protein has also been attributed to other neurodegenerative-disease-associ...

Descripción completa

Detalles Bibliográficos
Autores principales: Henríquez, Gabriela, Mendez, Lois, Varela-Ramirez, Armando, Guerrero, Erick, Narayan, Mahesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301549/
https://www.ncbi.nlm.nih.gov/pubmed/32566844
http://dx.doi.org/10.1021/acsomega.0c00396
Descripción
Sumario:[Image: see text] Until the recent past, the sole exemplar of proteins as infectious agents leading to neurodegenerative disorders remained the prion protein. Since then, the self-seeding mechanism characteristic of the prion protein has also been attributed to other neurodegenerative-disease-associated proteins, including amyloid-β (Aβ), tau, and α-synuclein (α-Syn). In model cell line studies, truncated Aβ, viz. amyloid beta (25–35), has been found to influence cellular homeostasis through its interactions with, and via, the disruption of key housekeeping machinery. Here, we demonstrate that the incubation of human neuroblastoma (SH-SY5Y) cell line with Brazilin ((6aS,11bR)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol) prior to Aβ (25–35)-insult protected the cells from oxidative stress and apoptotic cell death. Furthermore, Brazilin mitigated Aβ-induced alterations in protein disulfide isomerase (PDI) and α-synuclein status, both of which are important biomarkers that report on Parkinson’s pathogenesis. The results obtained in this study suggest that the tetrol is neuroprotective and helps resist Aβ-induced cross-pathology and amyloidogenic onset.