Cargando…
Transitive Sequencing Medical Records for Mining Predictive and Interpretable Temporal Representations
Electronic health records (EHRs) contain important temporal information about the progression of disease and treatment outcomes. This paper proposes a transitive sequencing approach for constructing temporal representations from EHR observations for downstream machine learning. Using clinical data f...
Autores principales: | Estiri, Hossein, Strasser, Zachary H., Klann, Jeffery G., McCoy, Thomas H., Wagholikar, Kavishwar B., Vasey, Sebastien, Castro, Victor M., Murphy, MaryKate E., Murphy, Shawn N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301790/ https://www.ncbi.nlm.nih.gov/pubmed/32835307 http://dx.doi.org/10.1016/j.patter.2020.100051 |
Ejemplares similares
-
Predicting COVID-19 mortality with electronic medical records
por: Estiri, Hossein, et al.
Publicado: (2021) -
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022) -
Polar labeling: silver standard algorithm for training disease classifiers
por: Wagholikar, Kavishwar B, et al.
Publicado: (2020) -
Generative transfer learning for measuring plausibility of EHR diagnosis records
por: Estiri, Hossein, et al.
Publicado: (2020) -
Feasibility of Homomorphic Encryption for Sharing I2B2 Aggregate-Level Data in the Cloud
por: Raisaro, Jean Louis, et al.
Publicado: (2018)