Cargando…

Identification and characterization of a moonlighting protein-enolase for surface display in Streptococcus thermophilus

BACKGROUND: Streptococcus thermophilus is an important food starter and receiving more attention to serve as cell factories for production of high-valued metabolites. However, the low yields of intracellular or extracellular expression of biotechnological and biomedical proteins limit its practical...

Descripción completa

Detalles Bibliográficos
Autores principales: Mu, Yingli, Xin, Yongping, Guo, Tingting, Kong, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301973/
https://www.ncbi.nlm.nih.gov/pubmed/32552809
http://dx.doi.org/10.1186/s12934-020-01389-y
Descripción
Sumario:BACKGROUND: Streptococcus thermophilus is an important food starter and receiving more attention to serve as cell factories for production of high-valued metabolites. However, the low yields of intracellular or extracellular expression of biotechnological and biomedical proteins limit its practical applications. RESULTS: Here, an enolase EnoM was identified from S. thermophilus CGMCC7.179 with about 94% identities to the surface-located enolases from other Streptococcus spp. strains. The EnoM was used as an anchor to achieve surface display in S. thermophilus using GFP as a reporter. After respectively mixing the GFP-EnoM fusion protein or GFP with S. thermophilus cells in vitro, the relative fluorescence units (RFU) of the S. thermophilus cells with GFP-EnoM was 80-folds higher than that with purified GFP. The sharp decrease in the RFU of sodium dodecyl sulfate (SDS) pretreated cells compared to those of non-pretreated cells demonstrated that the membrane proteins were the binding ligand of EnoM. Furthermore, an engineered β-galactosidase (β-Gal) was also successfully displayed on the cell surface of S. thermophilus CGMCC7.179 and the relative activity of the immobilized β-Gal remained up to 64% after reused 8 times. Finally, we also demonstrated that EnoM could be used as an anchor for surface display in L. casei, L. bulgaricus, L. lactis and Leuconostoc lactis. CONCLUSION: To our knowledge, EnoM from S. thermophilus was firstly identified as an anchor and successfully achieved surface display in LAB. The EnoM-based surface display system provided a novel strategy for the enzyme immobilization.