Cargando…
Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation
BACKGROUND AND PURPOSE: Computed tomography (CT) scanning is the basis for radiation treatment planning, but the 50-cm standard scanning field of view (sFOV) may be too small for imaging larger patients. We evaluated the 65-cm high-definition (HD) FOV of a large-bore CT scanner for CT number accurac...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302052/ https://www.ncbi.nlm.nih.gov/pubmed/32551371 http://dx.doi.org/10.1016/j.phro.2020.03.004 |
_version_ | 1783547785802416128 |
---|---|
author | Wu, Richard Y. Williamson, Tyler D. Sahoo, Narayan Nguyen, Trang Ikner, Shane M. Liu, Amy Y. Wisdom, Paul G. Lii, MingFu Hunter, Rachel A. Alvarez, Paola E. Gunn, G. Brandon Frank, Steven J. Hojo, Yoshifumi Zhu, X. Ronald Gillin, Michael T. |
author_facet | Wu, Richard Y. Williamson, Tyler D. Sahoo, Narayan Nguyen, Trang Ikner, Shane M. Liu, Amy Y. Wisdom, Paul G. Lii, MingFu Hunter, Rachel A. Alvarez, Paola E. Gunn, G. Brandon Frank, Steven J. Hojo, Yoshifumi Zhu, X. Ronald Gillin, Michael T. |
author_sort | Wu, Richard Y. |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Computed tomography (CT) scanning is the basis for radiation treatment planning, but the 50-cm standard scanning field of view (sFOV) may be too small for imaging larger patients. We evaluated the 65-cm high-definition (HD) FOV of a large-bore CT scanner for CT number accuracy, geometric distortion, image quality degradation, and dosimetric accuracy of photon treatment plans. MATERIALS AND METHODS: CT number accuracy was tested by placing two 16-cm acrylic phantoms on either side of a 40-cm phantom to simulate a large patient extending beyond the 50-cm-diameter standard scanning FOV. Dosimetric accuracy was tested using anthropomorphic pelvis and thorax phantoms, with additional acrylic body parts on either side of the phantoms. Two volumetric modulated arc therapy beams (a 15-MV and a 6-MV) were used to cover the planning target volumes. Two-dimensional dose distributions were evaluated with GAFChromic film and point dose accuracy was checked with multiple thermoluminescent dosimeter (TLD) capsules placed in the phantoms. Image quality was tested by placing an American College of Radiology accreditation phantom inside the 40-cm phantom. RESULTS: The HD FOV showed substantial changes in CT numbers, with differences of 314 HU–725 HU at different density levels. The volume of the body parts extending into the HD FOV was distorted. However, TLD-reported doses for all PTVs agreed within ±3%. Dose agreement in organs at risk were within the passing criteria, and the gamma index pass rate was >97%. Image quality was degraded. CONCLUSIONS: The HD FOV option is adequate for RT simulation and met accreditation standards, although care should be taken during contouring because of reduced image quality. |
format | Online Article Text |
id | pubmed-7302052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-73020522020-06-18 Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation Wu, Richard Y. Williamson, Tyler D. Sahoo, Narayan Nguyen, Trang Ikner, Shane M. Liu, Amy Y. Wisdom, Paul G. Lii, MingFu Hunter, Rachel A. Alvarez, Paola E. Gunn, G. Brandon Frank, Steven J. Hojo, Yoshifumi Zhu, X. Ronald Gillin, Michael T. Phys Imaging Radiat Oncol Original Research Article BACKGROUND AND PURPOSE: Computed tomography (CT) scanning is the basis for radiation treatment planning, but the 50-cm standard scanning field of view (sFOV) may be too small for imaging larger patients. We evaluated the 65-cm high-definition (HD) FOV of a large-bore CT scanner for CT number accuracy, geometric distortion, image quality degradation, and dosimetric accuracy of photon treatment plans. MATERIALS AND METHODS: CT number accuracy was tested by placing two 16-cm acrylic phantoms on either side of a 40-cm phantom to simulate a large patient extending beyond the 50-cm-diameter standard scanning FOV. Dosimetric accuracy was tested using anthropomorphic pelvis and thorax phantoms, with additional acrylic body parts on either side of the phantoms. Two volumetric modulated arc therapy beams (a 15-MV and a 6-MV) were used to cover the planning target volumes. Two-dimensional dose distributions were evaluated with GAFChromic film and point dose accuracy was checked with multiple thermoluminescent dosimeter (TLD) capsules placed in the phantoms. Image quality was tested by placing an American College of Radiology accreditation phantom inside the 40-cm phantom. RESULTS: The HD FOV showed substantial changes in CT numbers, with differences of 314 HU–725 HU at different density levels. The volume of the body parts extending into the HD FOV was distorted. However, TLD-reported doses for all PTVs agreed within ±3%. Dose agreement in organs at risk were within the passing criteria, and the gamma index pass rate was >97%. Image quality was degraded. CONCLUSIONS: The HD FOV option is adequate for RT simulation and met accreditation standards, although care should be taken during contouring because of reduced image quality. Elsevier 2020-03-26 /pmc/articles/PMC7302052/ /pubmed/32551371 http://dx.doi.org/10.1016/j.phro.2020.03.004 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Article Wu, Richard Y. Williamson, Tyler D. Sahoo, Narayan Nguyen, Trang Ikner, Shane M. Liu, Amy Y. Wisdom, Paul G. Lii, MingFu Hunter, Rachel A. Alvarez, Paola E. Gunn, G. Brandon Frank, Steven J. Hojo, Yoshifumi Zhu, X. Ronald Gillin, Michael T. Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
title | Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
title_full | Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
title_fullStr | Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
title_full_unstemmed | Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
title_short | Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
title_sort | evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302052/ https://www.ncbi.nlm.nih.gov/pubmed/32551371 http://dx.doi.org/10.1016/j.phro.2020.03.004 |
work_keys_str_mv | AT wurichardy evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT williamsontylerd evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT sahoonarayan evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT nguyentrang evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT iknershanem evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT liuamyy evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT wisdompaulg evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT liimingfu evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT hunterrachela evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT alvarezpaolae evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT gunngbrandon evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT frankstevenj evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT hojoyoshifumi evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT zhuxronald evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation AT gillinmichaelt evaluationofthehighdefinitionfieldofviewoptionofalargeborecomputedtomographyscannerforradiationtherapysimulation |