Cargando…
QEScalor: Quantitative Elastic Scaling Framework in Distributed Streaming Processing
Recently, researchers usually use the elastic scaling techniques as a powerful means of the distributed stream processing systems to deal with the high-speed data stream which arrives continuously and fluctuates constantly. The existing methods allocate the same amount of resources to the instances...
Autores principales: | Mu, Weimin, Jin, Zongze, Zhu, Weilin, Liu, Fan, Li, Zhenzhen, Zhu, Ziyuan, Wang, Weiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302273/ http://dx.doi.org/10.1007/978-3-030-50371-0_11 |
Ejemplares similares
-
A stream processing abstraction framework
por: Bartolini, Ilaria, et al.
Publicado: (2023) -
SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
A quantitative analysis of hydraulic interaction processes in stream-aquifer systems
por: Wang, Wenke, et al.
Publicado: (2016) -
Apache Flink: Distributed Stream Data Processing
por: Jacobs, Kevin, et al.
Publicado: (2016) -
Bonsai: an event-based framework for processing and controlling data streams
por: Lopes, Gonçalo, et al.
Publicado: (2015)