Cargando…
Segmentation of small ground glass opacity pulmonary nodules based on Markov random field energy and Bayesian probability difference
BACKGROUND: Image segmentation is an important part of computer-aided diagnosis (CAD), the segmentation of small ground glass opacity (GGO) pulmonary nodules is beneficial for the early detection of lung cancer. For the segmentation of small GGO pulmonary nodules, an integrated active contour model...
Autores principales: | Zhang, Shaorong, Chen, Xiangmeng, Zhu, Zhibin, Feng, Bao, Chen, Yehang, Long, Wansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302391/ https://www.ncbi.nlm.nih.gov/pubmed/32552724 http://dx.doi.org/10.1186/s12938-020-00793-0 |
Ejemplares similares
-
An Automatic Random Walker Algorithm for Segmentation of Ground Glass Opacity Pulmonary Nodules
por: Li, Xiangxia, et al.
Publicado: (2022) -
Lymphadenectomy is Unnecessary for Pure Ground-Glass Opacity Pulmonary Nodules
por: Lin, Yi-Han, et al.
Publicado: (2020) -
Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules
por: Yang, Jing, et al.
Publicado: (2018) -
Malignant Pure Pulmonary Ground-Glass Opacity Nodules: Prognostic Implications
por: Park, Jong Heon, et al.
Publicado: (2009) -
Invasiveness and surgical timing evaluation by clinical features of ground‐glass opacity nodules in lung cancers
por: Chen, Pai‐Hsi, et al.
Publicado: (2019)