Cargando…
Genetic Learning Particle Swarm Optimization with Interlaced Ring Topology
Genetic learning particle swarm optimization (GL-PSO) is a hybrid optimization method based on particle swarm optimization (PSO) and genetic algorithm (GA). The GL-PSO method improves the performance of PSO by constructing superior exemplars from which individuals of the population learn to move in...
Autor principal: | Borowska, Bożena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302555/ http://dx.doi.org/10.1007/978-3-030-50426-7_11 |
Ejemplares similares
-
Learning Competitive Swarm Optimization
por: Borowska, Bożena
Publicado: (2022) -
On interlaced injector synchrotrons
por: Hardt, W
Publicado: (1966) -
An introduction to random interlacements
por: Drewitz, Alexander, et al.
Publicado: (2014) -
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
por: Sun, Tao, et al.
Publicado: (2017) -
Lagrange Interpolation Learning Particle Swarm Optimization
por: Kai, Zhang, et al.
Publicado: (2016)