Cargando…
OpenGraphGym: A Parallel Reinforcement Learning Framework for Graph Optimization Problems
This paper presents an open-source, parallel AI environment (named OpenGraphGym) to facilitate the application of reinforcement learning (RL) algorithms to address combinatorial graph optimization problems. This environment incorporates a basic deep reinforcement learning method, and several graph e...
Autores principales: | Zheng, Weijian, Wang, Dali, Song, Fengguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302566/ http://dx.doi.org/10.1007/978-3-030-50426-7_33 |
Ejemplares similares
-
Gargoyles: An Open
Source Graph-Based Molecular Optimization
Method Based on Deep Reinforcement Learning
por: Erikawa, Daiki, et al.
Publicado: (2023) -
Python reinforcement learning: solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI Gym and TensorFlow
por: Ravichandiran, Sudharsan, et al.
Publicado: (2019) -
Applied reinforcement learning with Python: with OpenAI Gym, TensorFlow, and Keras
por: Beysolow, Taweh
Publicado: (2019) -
Hands-on reinforcement learning with Python: master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
por: Ravichandiran, Sudharsan
Publicado: (2018) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021)