Cargando…
Model-Based Sensitivity Analysis of Nondestructive Testing Systems Using Machine Learning Algorithms
Model-based sensitivity analysis is crucial in quantifying which input variability parameter is important for nondestructive testing (NDT) systems. In this work, neural networks (NN) and convolutional NN (CNN) are shown to be computationally efficient at making model prediction for NDT systems, when...
Autores principales: | Nagawkar, Jethro, Leifsson, Leifur, Miorelli, Roberto, Calmon, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302568/ http://dx.doi.org/10.1007/978-3-030-50426-7_6 |
Ejemplares similares
-
Surrogate-based modeling and optimization: applications in engineering
por: Koziel, Slawomir, et al.
Publicado: (2013) -
Simulation-driven design by knowledge-based response correction techniques
por: Koziel, Slawomir, et al.
Publicado: (2016) -
Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms
por: Wei, Yanlin, et al.
Publicado: (2020) -
Nondestructive Classification of Maize Moldy Seeds by Hyperspectral Imaging and Optimal Machine Learning Algorithms
por: Hu, Yating, et al.
Publicado: (2022) -
3rd International Workshop on Advances in Simulation-Driven Optimization and Modeling
por: Koziel, Slawomir, et al.
Publicado: (2016)