Cargando…

An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra

After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control...

Descripción completa

Detalles Bibliográficos
Autores principales: Milali, Masabho P., Kiware, Samson S., Govella, Nicodem J., Okumu, Fredros, Bansal, Naveen, Bozdag, Serdar, Charlwood, Jacques D., Maia, Marta F., Ogoma, Sheila B., Dowell, Floyd E., Corliss, George F., Sikulu-Lord, Maggy T., Povinelli, Richard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302571/
https://www.ncbi.nlm.nih.gov/pubmed/32555660
http://dx.doi.org/10.1371/journal.pone.0234557
_version_ 1783547874271821824
author Milali, Masabho P.
Kiware, Samson S.
Govella, Nicodem J.
Okumu, Fredros
Bansal, Naveen
Bozdag, Serdar
Charlwood, Jacques D.
Maia, Marta F.
Ogoma, Sheila B.
Dowell, Floyd E.
Corliss, George F.
Sikulu-Lord, Maggy T.
Povinelli, Richard J.
author_facet Milali, Masabho P.
Kiware, Samson S.
Govella, Nicodem J.
Okumu, Fredros
Bansal, Naveen
Bozdag, Serdar
Charlwood, Jacques D.
Maia, Marta F.
Ogoma, Sheila B.
Dowell, Floyd E.
Corliss, George F.
Sikulu-Lord, Maggy T.
Povinelli, Richard J.
author_sort Milali, Masabho P.
collection PubMed
description After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections.
format Online
Article
Text
id pubmed-7302571
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73025712020-06-19 An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra Milali, Masabho P. Kiware, Samson S. Govella, Nicodem J. Okumu, Fredros Bansal, Naveen Bozdag, Serdar Charlwood, Jacques D. Maia, Marta F. Ogoma, Sheila B. Dowell, Floyd E. Corliss, George F. Sikulu-Lord, Maggy T. Povinelli, Richard J. PLoS One Research Article After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections. Public Library of Science 2020-06-18 /pmc/articles/PMC7302571/ /pubmed/32555660 http://dx.doi.org/10.1371/journal.pone.0234557 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Milali, Masabho P.
Kiware, Samson S.
Govella, Nicodem J.
Okumu, Fredros
Bansal, Naveen
Bozdag, Serdar
Charlwood, Jacques D.
Maia, Marta F.
Ogoma, Sheila B.
Dowell, Floyd E.
Corliss, George F.
Sikulu-Lord, Maggy T.
Povinelli, Richard J.
An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
title An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
title_full An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
title_fullStr An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
title_full_unstemmed An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
title_short An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
title_sort autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302571/
https://www.ncbi.nlm.nih.gov/pubmed/32555660
http://dx.doi.org/10.1371/journal.pone.0234557
work_keys_str_mv AT milalimasabhop anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT kiwaresamsons anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT govellanicodemj anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT okumufredros anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT bansalnaveen anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT bozdagserdar anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT charlwoodjacquesd anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT maiamartaf anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT ogomasheilab anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT dowellfloyde anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT corlissgeorgef anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT sikululordmaggyt anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT povinellirichardj anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT milalimasabhop autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT kiwaresamsons autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT govellanicodemj autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT okumufredros autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT bansalnaveen autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT bozdagserdar autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT charlwoodjacquesd autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT maiamartaf autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT ogomasheilab autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT dowellfloyde autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT corlissgeorgef autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT sikululordmaggyt autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT povinellirichardj autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra