Cargando…
An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra
After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302571/ https://www.ncbi.nlm.nih.gov/pubmed/32555660 http://dx.doi.org/10.1371/journal.pone.0234557 |
_version_ | 1783547874271821824 |
---|---|
author | Milali, Masabho P. Kiware, Samson S. Govella, Nicodem J. Okumu, Fredros Bansal, Naveen Bozdag, Serdar Charlwood, Jacques D. Maia, Marta F. Ogoma, Sheila B. Dowell, Floyd E. Corliss, George F. Sikulu-Lord, Maggy T. Povinelli, Richard J. |
author_facet | Milali, Masabho P. Kiware, Samson S. Govella, Nicodem J. Okumu, Fredros Bansal, Naveen Bozdag, Serdar Charlwood, Jacques D. Maia, Marta F. Ogoma, Sheila B. Dowell, Floyd E. Corliss, George F. Sikulu-Lord, Maggy T. Povinelli, Richard J. |
author_sort | Milali, Masabho P. |
collection | PubMed |
description | After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections. |
format | Online Article Text |
id | pubmed-7302571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-73025712020-06-19 An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra Milali, Masabho P. Kiware, Samson S. Govella, Nicodem J. Okumu, Fredros Bansal, Naveen Bozdag, Serdar Charlwood, Jacques D. Maia, Marta F. Ogoma, Sheila B. Dowell, Floyd E. Corliss, George F. Sikulu-Lord, Maggy T. Povinelli, Richard J. PLoS One Research Article After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections. Public Library of Science 2020-06-18 /pmc/articles/PMC7302571/ /pubmed/32555660 http://dx.doi.org/10.1371/journal.pone.0234557 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Milali, Masabho P. Kiware, Samson S. Govella, Nicodem J. Okumu, Fredros Bansal, Naveen Bozdag, Serdar Charlwood, Jacques D. Maia, Marta F. Ogoma, Sheila B. Dowell, Floyd E. Corliss, George F. Sikulu-Lord, Maggy T. Povinelli, Richard J. An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
title | An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
title_full | An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
title_fullStr | An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
title_full_unstemmed | An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
title_short | An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
title_sort | autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302571/ https://www.ncbi.nlm.nih.gov/pubmed/32555660 http://dx.doi.org/10.1371/journal.pone.0234557 |
work_keys_str_mv | AT milalimasabhop anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT kiwaresamsons anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT govellanicodemj anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT okumufredros anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT bansalnaveen anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT bozdagserdar anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT charlwoodjacquesd anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT maiamartaf anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT ogomasheilab anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT dowellfloyde anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT corlissgeorgef anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT sikululordmaggyt anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT povinellirichardj anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT milalimasabhop autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT kiwaresamsons autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT govellanicodemj autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT okumufredros autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT bansalnaveen autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT bozdagserdar autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT charlwoodjacquesd autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT maiamartaf autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT ogomasheilab autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT dowellfloyde autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT corlissgeorgef autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT sikululordmaggyt autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra AT povinellirichardj autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra |