Cargando…
A Random Line-Search Optimization Method via Modified Cholesky Decomposition for Non-linear Data Assimilation
This paper proposes a line-search optimization method for non-linear data assimilation via random descent directions. The iterative method works as follows: at each iteration, quadratic approximations of the Three-Dimensional-Variational (3D-Var) cost function are built about current solutions. Thes...
Autor principal: | Nino-Ruiz, Elias D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302575/ http://dx.doi.org/10.1007/978-3-030-50426-7_15 |
Ejemplares similares
-
A Maximum Likelihood Ensemble Filter via a Modified Cholesky Decomposition for Non-Gaussian Data Assimilation
por: Nino-Ruiz, Elias David, et al.
Publicado: (2020) -
Implementation of Cholesky Decomposition with SIMD vectorization
por: Balasubramanian, Rahul
Publicado: (2016) -
Fast DOA Estimation Algorithms via Positive Incremental Modified Cholesky Decomposition for Augmented Coprime Array Sensors
por: Song, Jing, et al.
Publicado: (2023) -
Improved GNSS integer ambiguity resolution method based on the column oriented Cholesky decomposition
por: Jiao, Yingxiang, et al.
Publicado: (2023) -
Solving animal model equations through an approximate incomplete Cholesky decomposition
por: Ducrocq, V
Publicado: (1992)