Cargando…
Early Glaucoma Discrimination Index
PURPOSE: To develop a new structural algorithm derived from optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness and asymmetry and validate it as a discriminate among normal, suspect, and early primary open-angle glaucoma (POAG). STUDY DESIGN: A case-controlled observational...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Jaypee Brothers Medical Publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302609/ https://www.ncbi.nlm.nih.gov/pubmed/32581464 http://dx.doi.org/10.5005/jp-journals-10078-1271 |
Sumario: | PURPOSE: To develop a new structural algorithm derived from optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness and asymmetry and validate it as a discriminate among normal, suspect, and early primary open-angle glaucoma (POAG). STUDY DESIGN: A case-controlled observational clinical study. MATERIALS AND METHODS: In total, 150 subjects (299 eyes) were selected, 61 normal, 46 suspect, and 43 early glaucoma, from Al-Azhar University Hospitals. They were in fifth decade and free from any ocular or systemic diseases affecting the retinal nerve fiber layer. They were investigated by two consecutive perimetry (1 month apart), and three scans of circumpapillary retinal nerve fiber layer (cpRNFL) by using Nidek spectral domain (SD)-OCT 3000 Lite. The cpRNFL thickness (cpRNFLT) and inter-eye asymmetry parameters were analyzed among the three groups. Then some selected parameters were selected and analyzed using a binary logistic regression analysis for developing the new algorithm. The new algorithm was tested for the best fitting, accuracy, and diagnostic ability among the three groups and was validated in the suspect group. RESULTS: The new algorithm model [early glaucoma discrimination index (EGDI)] works well with only four variables; whole cpRNFLT, inferior quadrant cpRNFLT, inferotemporal clock hour (CH) cpRNFLT, and absolute inter-eye inferior quadrants asymmetry. The highest area under the curve (AUC) obtained from the EGDI among the three groups was 0.854. The validation analysis in the suspect group revealed a higher diagnostic ability in discrimination of early glaucoma with AUC of 0.989 (0.976–1.003). CONCLUSION: The EGDI showed better diagnostic ability for diagnosis of glaucoma in the pre-perimetric stage. The new OCT algorithm is simple and can be run in any SD-OCT device without dependence on normative data. HOW TO CITE THIS ARTICLE: Safwat H, Nassar E, Rashwan A. Early Glaucoma Discrimination Index. J Curr Glaucoma Pract 2020;14(1):16–24. |
---|