Cargando…
SciNER: Extracting Named Entities from Scientific Literature
The automated extraction of claims from scientific papers via computer is difficult due to the ambiguity and variability inherent in natural language. Even apparently simple tasks, such as isolating reported values for physical quantities (e.g., “the melting point of X is Y”) can be complicated by s...
Autores principales: | Hong, Zhi, Tchoua, Roselyne, Chard, Kyle, Foster, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302801/ http://dx.doi.org/10.1007/978-3-030-50417-5_23 |
Ejemplares similares
-
CheNER: chemical named entity recognizer
por: Usié, Anabel, et al.
Publicado: (2014) -
DroNER: Dataset for drone named entity recognition
por: Silalahi, Swardiantara, et al.
Publicado: (2023) -
S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition
por: Yu, Jie, et al.
Publicado: (2022) -
EduNER: a Chinese named entity recognition dataset for education research
por: Li, Xu, et al.
Publicado: (2023) -
Deep learning with language models improves named entity recognition for PharmaCoNER
por: Sun, Cong, et al.
Publicado: (2021)