Cargando…
DeepAD: A Joint Embedding Approach for Anomaly Detection on Attributed Networks
Detecting anomalies in the attributed network is a vital task that is widely used, ranging from social media, finance to cybersecurity. Recently, network embedding has proven an important approach to learn low-dimensional representations of vertexes in networks. Most of the existing approaches only...
Autores principales: | Zhu, Dali, Ma, Yuchen, Liu, Yinlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302823/ http://dx.doi.org/10.1007/978-3-030-50417-5_22 |
Ejemplares similares
-
DeepAD: A deep learning application for predicting amyloid standardized uptake value ratio through PET for Alzheimer's prognosis
por: Maddury, Sucheer, et al.
Publicado: (2023) -
Towards Network Anomaly Detection Using Graph Embedding
por: Xiao, Qingsai, et al.
Publicado: (2020) -
Network Anomaly Intrusion Detection Based on Deep Learning Approach
por: Wang, Yung-Chung, et al.
Publicado: (2023) -
DANE-MDA: Predicting microRNA-disease associations via deep attributed network embedding
por: Ji, Bo-Ya, et al.
Publicado: (2021) -
Effective attributed network embedding with information behavior extraction
por: Hu, Ganglin, et al.
Publicado: (2022)