Cargando…
Data-Driven Partial Differential Equations Discovery Approach for the Noised Multi-dimensional Data
Data-driven methods provide model creation tools for systems, where the application of conventional analytical methods is restrained. The proposed method involves the data-driven derivation of a partial differential equation (PDE) for process dynamics, which can be helpful both for process simulatio...
Autores principales: | Maslyaev, Mikhail, Hvatov, Alexander, Kalyuzhnaya, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302831/ http://dx.doi.org/10.1007/978-3-030-50417-5_7 |
Ejemplares similares
-
Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning
por: Kalyuzhnaya, Anna V., et al.
Publicado: (2020) -
Data-driven discovery of partial differential equations
por: Rudy, Samuel H., et al.
Publicado: (2017) -
Learning data-driven discretizations for partial differential equations
por: Bar-Sinai, Yohai, et al.
Publicado: (2019) -
Stochastic partial differential equations with Lévy noise: an evolution equation approach
por: Peszat, S, et al.
Publicado: (2007) -
Data-driven discovery of coordinates and governing equations
por: Champion, Kathleen, et al.
Publicado: (2019)