Cargando…
Exploring Musical Structure Using Tonnetz Lattice Geometry and LSTMs
We study the use of Long Short-Term Memory neural networks to the modeling and prediction of music. Approaches to applying machine learning in modeling and prediction of music often apply little, if any, music theory as part of their algorithms. In contrast, we propose an approach which employs mini...
Autores principales: | Aminian, Manuchehr, Kehoe, Eric, Ma, Xiaofeng, Peterson, Amy, Kirby, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302842/ http://dx.doi.org/10.1007/978-3-030-50417-5_31 |
Ejemplares similares
-
Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization
por: Yu, Dongyeon, et al.
Publicado: (2021) -
Child-Sum EATree-LSTMs: enhanced attentive Child-Sum Tree-LSTMs for biomedical event extraction
por: Wang, Lei, et al.
Publicado: (2023) -
Forecasting Hazard Level of Air Pollutants Using LSTM’s
por: Gul, Saba, et al.
Publicado: (2020) -
Anomaly Detection Using an Ensemble of Multi-Point LSTMs
por: Lee, Geonseok, et al.
Publicado: (2023) -
DSCNN-LSTMs: A Lightweight and Efficient Model for Epilepsy Recognition
por: Huang, Zhentao, et al.
Publicado: (2022)