Cargando…
Regression Methods for Detecting Anomalies in Flue Gas Desulphurization Installations in Coal-Fired Power Plants Based on Sensor Data
In the industrial world, the Internet of Things produces an enormous amount of data that we can use as a source for machine learning algorithms to optimize the production process. One area of application of this kind of advanced analytics is Predictive Maintenance, which involves early detection of...
Autores principales: | Moleda, Marek, Momot, Alina, Mrozek, Dariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302847/ http://dx.doi.org/10.1007/978-3-030-50426-7_24 |
Ejemplares similares
-
Synthesis and Characterization of Zeolites Produced from Low-Quality Coal Fly Ash and Wet Flue Gas Desulphurization Wastewater
por: Nowak, Paulina, et al.
Publicado: (2021) -
Characterization of flue gas desulphurized (FGD) gypsum of a coal-fired plant and its relevant risk of associated potential toxic elements in sodic soil reclamation
por: Sundha, Parul, et al.
Publicado: (2023) -
Predictive Maintenance of Boiler Feed Water Pumps Using SCADA Data
por: Moleda, Marek, et al.
Publicado: (2020) -
Investigation on the Corrosion of the
Elbows in the Flue Gas Cooler of a 600 MW Coal-Fired Power Plant
por: Pan, Peiyuan, et al.
Publicado: (2020) -
Acidity of rainfall samples in close vicinity of coal-fired power plant with wet cooling tower with flue gas injection
por: Korszun-Klak, Katarzyna, et al.
Publicado: (2021)