Cargando…
Fitting Penalized Logistic Regression Models Using QR Factorization
The paper presents improvement of a commonly used learning algorithm for logistic regression. In the direct approach Newton method needs inversion of Hessian, what is cubic with respect to the number of attributes. We study a special case when the number of samples m is smaller than the number of at...
Autores principales: | Klimaszewski, Jacek, Korzeń, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302851/ http://dx.doi.org/10.1007/978-3-030-50417-5_4 |
Ejemplares similares
-
Comparison of standard and penalized logistic regression in risk model development
por: Yan, Yan, et al.
Publicado: (2022) -
Goodness of fit for the logistic regression model using relative belief
por: Al-Labadi, Luai, et al.
Publicado: (2017) -
Gene and pathway identification with L(p )penalized Bayesian logistic regression
por: Liu, Zhenqiu, et al.
Publicado: (2008) -
Identification of Grouped Rare and Common Variants via Penalized Logistic Regression
por: Ayers, Kristin L, et al.
Publicado: (2013) -
Penalized logistic regressions with technical indicators predict up and down trends
por: Jiang, Huifeng, et al.
Publicado: (2022)