Cargando…
DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images
PURPOSE: Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid-attenuated inversion recovery (FLAIR) MRI moda...
Autores principales: | Zeineldin, Ramy A., Karar, Mohamed E., Coburger, Jan, Wirtz, Christian R., Burgert, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303084/ https://www.ncbi.nlm.nih.gov/pubmed/32372386 http://dx.doi.org/10.1007/s11548-020-02186-z |
Ejemplares similares
-
Explainability of deep neural networks for MRI analysis of brain tumors
por: Zeineldin, Ramy A., et al.
Publicado: (2022) -
AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
por: Zaimi, Aldo, et al.
Publicado: (2018) -
ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates
por: Wang, Yun, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
GeneSegNet: a deep learning framework for cell segmentation by integrating gene expression and imaging
por: Wang, Yuxing, et al.
Publicado: (2023)