Cargando…
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Automatically detecting and grading cancerous regions on radical prostatectomy (RP) sections facilitates graphical and quantitative pathology reporting, potentially benefitting post-surgery prognosis, recurrence prediction, and treatment planning after RP. Promising results for detecting and grading...
Autores principales: | Han, Wenchao, Johnson, Carol, Gaed, Mena, Gómez, José A., Moussa, Madeleine, Chin, Joseph L., Pautler, Stephen, Bauman, Glenn S., Ward, Aaron D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303108/ https://www.ncbi.nlm.nih.gov/pubmed/32555410 http://dx.doi.org/10.1038/s41598-020-66849-2 |
Ejemplares similares
-
3D prostate histology image reconstruction: Quantifying the impact of tissue deformation and histology section location
por: Gibson, Eli, et al.
Publicado: (2013) -
Short-duration dynamic [(18)F]DCFPyL PET and CT perfusion imaging to localize dominant intraprostatic lesions in prostate cancer: validation against digital histopathology and comparison to [(18)F]DCFPyL PET/MR at 120 minutes
por: Yang, Dae-Myoung, et al.
Publicado: (2021) -
Prostate specific membrane antigen positron emission tomography for lesion-directed high-dose-rate brachytherapy dose escalation
por: Smith, Christopher W., et al.
Publicado: (2021) -
Handling of Radical Prostatectomy Specimens: Total Embedding with Large-Format Histology
por: Montironi, Rodolfo, et al.
Publicado: (2012) -
Kinetic analysis of dominant intraprostatic lesion of prostate cancer using quantitative dynamic [(18)F]DCFPyL-PET: comparison to [(18)F]fluorocholine-PET
por: Yang, Dae-Myoung, et al.
Publicado: (2021)