Cargando…
Asymmetric one-pot transformation of isoflavones to pterocarpans and its application in phytoalexin synthesis
Phytoalexins have attracted much attention due to their health-promoting effects and their vital role in plant health during the last years. Especially the 6a-hydroxypterocarpans glyceollin I and glyceollin II, which may be isolated from stressed soy plants, possess a broad spectrum of bioactivities...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303153/ https://www.ncbi.nlm.nih.gov/pubmed/32555159 http://dx.doi.org/10.1038/s41467-020-16933-y |
Sumario: | Phytoalexins have attracted much attention due to their health-promoting effects and their vital role in plant health during the last years. Especially the 6a-hydroxypterocarpans glyceollin I and glyceollin II, which may be isolated from stressed soy plants, possess a broad spectrum of bioactivities such as anticancer activity and beneficial contributions against western diseases by anti-oxidative and anti-cholesterolemic effects. Aiming for a catalytic asymmetric access to these natural products, we establish the asymmetric syntheses of the natural isoflavonoids (−)-variabilin, (−)-homopterocarpin, (−)-medicarpin, (−)-3,9-dihydroxypterocarpan, and (−)-vestitol by means of an asymmetric transfer hydrogenation (ATH) reaction. We successfully adapt this pathway to the first catalytic asymmetric total synthesis of (−)-glyceollin I and (−)-glyceollin II. This eight-step synthesis features an efficient one-pot transformation of a 2′-hydroxyl-substituted isoflavone to a virtually enantiopure pterocarpan by means of an ATH and a regioselective benzylic oxidation under aerobic conditions to afford the susceptible 6a-hydroxypterocarpan skeleton. |
---|