Cargando…
Dissecting myogenin-mediated retinoid X receptor signaling in myogenic differentiation
Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarote...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303199/ https://www.ncbi.nlm.nih.gov/pubmed/32555436 http://dx.doi.org/10.1038/s42003-020-1043-9 |
Sumario: | Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration. |
---|