Cargando…
Recognizing Ion Ligand–Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle
The prediction of ion ligand–binding residues in protein sequences is a challenging work that contributes to understand the specific functions of proteins in life processes. In this article, we selected binding residues of 14 ion ligands as research objects, including four acid radical ion ligands a...
Autores principales: | Liu, Liu, Hu, Xiuzhen, Feng, Zhenxing, Wang, Shan, Sun, Kai, Xu, Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303464/ https://www.ncbi.nlm.nih.gov/pubmed/32596216 http://dx.doi.org/10.3389/fbioe.2020.00493 |
Ejemplares similares
-
Recognizing ion ligand binding sites by SMO algorithm
por: Wang, Shan, et al.
Publicado: (2019) -
The Identification of Metal Ion Ligand-Binding Residues by Adding the Reclassified Relative Solvent Accessibility
por: Hu, Xiuzhen, et al.
Publicado: (2020) -
Retinal Vessel Segmentation Algorithm Based on Residual Convolution Neural Network
por: Xu, Shuang, et al.
Publicado: (2021) -
Recognition of Metal Ion Ligand-Binding Residues by Adding Correlation Features and Propensity Factors
por: Xu, Shuang, et al.
Publicado: (2022) -
Prediction of DNA-Binding Protein–Drug-Binding Sites Using Residue Interaction Networks and Sequence Feature
por: Wang, Wei, et al.
Publicado: (2022)