Cargando…
On the Impact of Network Data Balancing in Cybersecurity Applications
Machine learning methods are now widely used to detect a wide range of cyberattacks. Nevertheless, the commonly used algorithms come with challenges of their own - one of them lies in network dataset characteristics. The dataset should be well-balanced in terms of the number of malicious data sample...
Autores principales: | Pawlicki, Marek, Choraś, Michał, Kozik, Rafał, Hołubowicz, Witold |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303680/ http://dx.doi.org/10.1007/978-3-030-50423-6_15 |
Ejemplares similares
-
How to Effectively Collect and Process Network Data for Intrusion Detection?
por: Komisarek, Mikołaj, et al.
Publicado: (2021) -
A Systematic Review of Recommender Systems and Their Applications in Cybersecurity
por: Pawlicka, Aleksandra, et al.
Publicado: (2021) -
A $10 million question and other cybersecurity-related ethical dilemmas amid the COVID-19 pandemic
por: Pawlicka, Aleksandra, et al.
Publicado: (2021) -
Sensors and Pattern Recognition Methods for Security and Industrial Applications
por: Choraś, Michał, et al.
Publicado: (2022) -
A Deep Learning Ensemble for Network Anomaly and Cyber-Attack Detection
por: Dutta, Vibekananda, et al.
Publicado: (2020)