Cargando…
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
Missing data is one of the most common preprocessing problems. In this paper, we experimentally research the use of generative and non-generative models for feature reconstruction. Variational Autoencoder with Arbitrary Conditioning (VAEAC) and Generative Adversarial Imputation Network (GAIN) were r...
Autores principales: | Friedjungová, Magda, Vašata, Daniel, Balatsko, Maksym, Jiřina, Marcel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303681/ http://dx.doi.org/10.1007/978-3-030-50423-6_17 |
Ejemplares similares
-
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
por: Blue, John
Publicado: (2021) -
EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss
por: Luo, Tian-jian, et al.
Publicado: (2020) -
Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network
por: Erdmann, Martin, et al.
Publicado: (2018) -
Generative adversarial networks for imputing missing data for big data clinical research
por: Dong, Weinan, et al.
Publicado: (2021) -
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022)