Cargando…
Machine Learning – The Results Are Not the only Thing that Matters! What About Security, Explainability and Fairness?
Recent advances in machine learning (ML) and the surge in computational power have opened the way to the proliferation of ML and Artificial Intelligence (AI) in many domains and applications. Still, apart from achieving good accuracy and results, there are many challenges that need to be discussed i...
Autores principales: | Choraś, Michał, Pawlicki, Marek, Puchalski, Damian, Kozik, Rafał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303684/ http://dx.doi.org/10.1007/978-3-030-50423-6_46 |
Ejemplares similares
-
Sensors and Pattern Recognition Methods for Security and Industrial Applications
por: Choraś, Michał, et al.
Publicado: (2022) -
New explainability method for BERT-based model in fake news detection
por: Szczepański, Mateusz, et al.
Publicado: (2021) -
On the Impact of Network Data Balancing in Cybersecurity Applications
por: Pawlicki, Marek, et al.
Publicado: (2020) -
A Deep Learning Ensemble for Network Anomaly and Cyber-Attack Detection
por: Dutta, Vibekananda, et al.
Publicado: (2020) -
A $10 million question and other cybersecurity-related ethical dilemmas amid the COVID-19 pandemic
por: Pawlicka, Aleksandra, et al.
Publicado: (2021)