Cargando…
Performance Analysis of Binarization Strategies for Multi-class Imbalanced Data Classification
Multi-class imbalanced classification tasks are characterized by the skewed distribution of examples among the classes and, usually, strong overlapping between class regions in the feature space. Furthermore, frequently the goal of the final system is to obtain very high precision for each of the co...
Autores principales: | Żak, Michał, Woźniak, Michał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303687/ http://dx.doi.org/10.1007/978-3-030-50423-6_11 |
Ejemplares similares
-
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021) -
A One-Versus-All Class Binarization Strategy for Bearing Diagnostics of Concurrent Defects
por: Ng, Selina S. Y., et al.
Publicado: (2014) -
An oversampling method for multi-class imbalanced data based on composite weights
por: Deng, Mingyang, et al.
Publicado: (2021) -
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010)