Cargando…
Time Expressions Identification Without Human-Labeled Corpus for Clinical Text Mining in Russian
To obtain accurate predictive models in medicine, it is necessary to use complete relevant information about the patient. We propose an approach for extracting temporary expressions from unlabeled natural language texts. This approach can be used for the first analysis of the corpus, for data labeli...
Autores principales: | Funkner, Anastasia A., Kovalchuk, Sergey V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303688/ http://dx.doi.org/10.1007/978-3-030-50423-6_44 |
Ejemplares similares
-
An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records
por: Koshman, Varvara, et al.
Publicado: (2022) -
An integrated pharmacokinetics ontology and corpus for text mining
por: Wu, Heng-Yi, et al.
Publicado: (2013) -
Experiencer Detection and Automated Extraction of a Family Disease Tree from Medical Texts in Russian Language
por: Balabaeva, Ksenia, et al.
Publicado: (2020) -
Annotated Chemical Patent Corpus: A Gold Standard for Text Mining
por: Akhondi, Saber A., et al.
Publicado: (2014) -
Text mining for neuroanatomy using WhiteText with an updated corpus and a new web application
por: French, Leon, et al.
Publicado: (2015)