Cargando…
Sentiment Analysis for Fake News Detection by Means of Neural Networks
The problem of fake news has become one of the most challenging issues having an impact on societies. Nowadays, false information may spread quickly through social media. In that regard, fake news needs to be detected as fast as possible to avoid negative influence on people who may rely on such inf...
Autores principales: | Kula, Sebastian, Choraś, Michał, Kozik, Rafał, Ksieniewicz, Paweł, Woźniak, Michał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303704/ http://dx.doi.org/10.1007/978-3-030-50423-6_49 |
Ejemplares similares
-
New explainability method for BERT-based model in fake news detection
por: Szczepański, Mateusz, et al.
Publicado: (2021) -
Implementation of the BERT-derived architectures to tackle disinformation challenges
por: Kula, Sebastian, et al.
Publicado: (2021) -
Covid-19 fake news sentiment analysis()
por: Iwendi, Celestine, et al.
Publicado: (2022) -
A Deep Learning Ensemble for Network Anomaly and Cyber-Attack Detection
por: Dutta, Vibekananda, et al.
Publicado: (2020) -
Fake news detection in social media based on sentiment analysis using classifier techniques
por: Balshetwar, Sarita V, et al.
Publicado: (2023)