Cargando…
Towards Network Anomaly Detection Using Graph Embedding
In the face of endless cyberattacks, many researchers have proposed machine learning-based network anomaly detection technologies. Traditional statistical features of network flows are manually extracted and rely heavily on expert knowledge, while classifiers based on statistical features have a hig...
Autores principales: | Xiao, Qingsai, Liu, Jian, Wang, Quiyun, Jiang, Zhengwei, Wang, Xuren, Yao, Yepeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303711/ http://dx.doi.org/10.1007/978-3-030-50423-6_12 |
Ejemplares similares
-
Entropy-based dynamic graph embedding for anomaly detection on multiple climate time series
por: Li, Gen, et al.
Publicado: (2021) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
por: Yang, Luwei, et al.
Publicado: (2020) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022) -
CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia
por: Yu, Xiang, et al.
Publicado: (2021)