Cargando…
Branch-and-Bound Search for Training Cascades of Classifiers
We propose a general algorithm that treats cascade training as a tree search process working according to the branch-and-bound technique. The algorithm allows to reduce the expected number of features used by an operating cascade—a key quantity we focus on in the paper. While searching, we observe s...
Autores principales: | Sychel, Dariusz, Klęsk, Przemysław, Bera, Aneta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303717/ http://dx.doi.org/10.1007/978-3-030-50423-6_2 |
Ejemplares similares
-
Reduction of Numerical Errors in Zernike Invariants Computed via Complex-Valued Integral Images
por: Klęsk, Przemysław, et al.
Publicado: (2020) -
Hybridizations of Metaheuristics With Branch & Bound Derivates
por: Blum, Christian, et al.
Publicado: (2008) -
Dynamics in Deep Classifiers Trained with the Square Loss: Normalization, Low Rank, Neural Collapse, and Generalization Bounds
por: Xu, Mengjia, et al.
Publicado: (2023) -
The Generalization Error Bound for the Multiclass Analytical Center Classifier
por: Fanzi, Zeng, et al.
Publicado: (2013) -
A Novel Cascade Classifier for Automatic Microcalcification Detection
por: Shin, Seung Yeon, et al.
Publicado: (2015)