Cargando…
Hybrid Text Feature Modeling for Disease Group Prediction Using Unstructured Physician Notes
Existing Clinical Decision Support Systems (CDSSs) largely depend on the availability of structured patient data and Electronic Health Records (EHRs) to aid caregivers. However, in case of hospitals in developing countries, structured patient data formats are not widely adopted, where medical profes...
Autores principales: | Krishnan, Gokul S., Kamath, S. Sowmya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303721/ http://dx.doi.org/10.1007/978-3-030-50423-6_24 |
Ejemplares similares
-
Use of unstructured text in prognostic clinical prediction models: a systematic review
por: Seinen, Tom M, et al.
Publicado: (2022) -
A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance
por: Lu, Hongxia, et al.
Publicado: (2022) -
Applying deep neural networks to unstructured text notes in electronic medical records for phenotyping youth depression
por: Geraci, Joseph, et al.
Publicado: (2017) -
Learning the Structure of Biomedical Relationships from Unstructured Text
por: Percha, Bethany, et al.
Publicado: (2015) -
Categorizing Medications from Unstructured Clinical Notes
por: Farooq, Faisal, et al.
Publicado: (2013)