Cargando…
Different Strategies of Fitting Logistic Regression for Positive and Unlabelled Data
In the paper we revisit the problem of fitting logistic regression to positive and unlabelled data. There are two key contributions. First, a new light is shed on the properties of frequently used naive method (in which unlabelled examples are treated as negative). In particular we show that naive m...
Autores principales: | Teisseyre, Paweł, Mielniczuk, Jan, Łazęcka, Małgorzata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303724/ http://dx.doi.org/10.1007/978-3-030-50423-6_1 |
Ejemplares similares
-
Analysis of Information-Based Nonparametric Variable Selection Criteria
por: Łazęcka, Małgorzata, et al.
Publicado: (2020) -
Distributions of a General Reduced-Order Dependence Measure and Conditional Independence Testing
por: Kubkowski, Mariusz, et al.
Publicado: (2020) -
Predicting Physical Appearance from DNA Data—Towards Genomic Solutions
por: Pośpiech, Ewelina, et al.
Publicado: (2022) -
Testing the Significance of Interactions in Genetic Studies Using Interaction Information and Resampling Technique
por: Teisseyre, Paweł, et al.
Publicado: (2020) -
Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies
por: Ramola, Rashika, et al.
Publicado: (2019)