Cargando…
Quantifying Overfitting Potential in Drug Binding Datasets
In this paper, we investigate potential biases in datasets used to make drug binding predictions using machine learning. We investigate a recently published metric called the Asymmetric Validation Embedding (AVE) bias which is used to quantify this bias and detect overfitting. We compare it to a sli...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304006/ http://dx.doi.org/10.1007/978-3-030-50420-5_44 |
Sumario: | In this paper, we investigate potential biases in datasets used to make drug binding predictions using machine learning. We investigate a recently published metric called the Asymmetric Validation Embedding (AVE) bias which is used to quantify this bias and detect overfitting. We compare it to a slightly revised version and introduce a new weighted metric. We find that the new metrics allow to quantify overfitting while not overly limiting training data and produce models with greater predictive value. |
---|