Cargando…
Quantifying Overfitting Potential in Drug Binding Datasets
In this paper, we investigate potential biases in datasets used to make drug binding predictions using machine learning. We investigate a recently published metric called the Asymmetric Validation Embedding (AVE) bias which is used to quantify this bias and detect overfitting. We compare it to a sli...
Autores principales: | Davis, Brian, Mcloughlin, Kevin, Allen, Jonathan, Ellingson, Sally R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304006/ http://dx.doi.org/10.1007/978-3-030-50420-5_44 |
Ejemplares similares
-
The overfitted brain hypothesis
por: Prince, Luke Y., et al.
Publicado: (2021) -
Hands-on training about overfitting
por: Demšar, Janez, et al.
Publicado: (2021) -
Overfit deep neural network for predicting drug-target interactions
por: Xiaolin, Xiao, et al.
Publicado: (2023) -
Overcome Support Vector Machine Diagnosis Overfitting
por: Han, Henry, et al.
Publicado: (2014) -
The overfitted brain: Dreams evolved to assist generalization
por: Hoel, Erik
Publicado: (2021)