Cargando…
Bootstrap Bias Corrected Cross Validation Applied to Super Learning
Super learner algorithm can be applied to combine results of multiple base learners to improve quality of predictions. The default method for verification of super learner results is by nested cross validation; however, this technique is very expensive computationally. It has been proposed by Tsamar...
Autores principales: | Mnich, Krzysztof, Kitlas Golińska, Agnieszka, Polewko-Klim, Aneta, Rudnicki, Witold R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304018/ http://dx.doi.org/10.1007/978-3-030-50420-5_41 |
Ejemplares similares
-
Sensitivity analysis based on the random forest machine learning algorithm identifies candidate genes for regulation of innate and adaptive immune response of chicken
por: Polewko-Klim, Aneta, et al.
Publicado: (2020) -
Robust Data Integration Method for Classification of Biomedical Data
por: Polewko-Klim, Aneta, et al.
Publicado: (2021) -
Integration of human cell lines gene expression and chemical properties of drugs for Drug Induced Liver Injury prediction
por: Lesiński, Wojciech, et al.
Publicado: (2021) -
Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival
por: Polewko-Klim, Aneta, et al.
Publicado: (2018) -
Analysis of Ensemble Feature Selection for Correlated High-Dimensional RNA-Seq Cancer Data
por: Polewko-Klim, Aneta, et al.
Publicado: (2020)