Cargando…
Design of Loss Functions for Solving Inverse Problems Using Deep Learning
Solving inverse problems is a crucial task in several applications that strongly affect our daily lives, including multiple engineering fields, military operations, and/or energy production. There exist different methods for solving inverse problems, including gradient based methods, statistics base...
Autores principales: | Rivera, Jon Ander, Pardo, David, Alberdi, Elisabete |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304019/ http://dx.doi.org/10.1007/978-3-030-50420-5_12 |
Ejemplares similares
-
Ambiguity in Solving Imaging Inverse Problems with Deep-Learning-Based Operators
por: Evangelista, Davide, et al.
Publicado: (2023) -
Discretization of Learned NETT Regularization for Solving Inverse Problems
por: Antholzer, Stephan, et al.
Publicado: (2021) -
Solving Inverse Electrocardiographic Mapping Using Machine Learning and Deep Learning Frameworks
por: Chen, Ke-Wei, et al.
Publicado: (2022) -
Learning to solve problems : a handbook for designing problem-solving learning environments /
por: Jonassen, David H., 1947-
Publicado: (2011) -
Solving Direct and Inverse Heat Conduction Problems
por: Taler, Jan, et al.
Publicado: (2006)