Cargando…
Ringer: Systematic Mining of Malicious Domains by Dynamic Graph Convolutional Network
Malicious domains are critical resources in network security, behind which attackers hide malware to launch the malicious attacks. Therefore, blocking malicious domains is the most effective and practical way to combat and reduce hostile activities. There are three limitations in previous methods ov...
Autores principales: | Liu, Zhicheng, Li, Shuhao, Zhang, Yongzheng, Yun, Xiaochun, Peng, Chengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304021/ http://dx.doi.org/10.1007/978-3-030-50420-5_28 |
Ejemplares similares
-
Graph neural networks and cross-protocol analysis for detecting malicious IP addresses
por: Huang, Yonghong, et al.
Publicado: (2022) -
DNS dataset for malicious domains detection
por: Marques, Cláudio, et al.
Publicado: (2021) -
Detection and Classification of Malicious Flows in Software-Defined Networks Using Data Mining Techniques
por: Amanowicz, Marek, et al.
Publicado: (2021) -
Coal Wall and Roof Segmentation in the Coal Mine Working
Face Based on Dynamic Graph Convolution Neural Networks
por: Xing, Zhizhong, et al.
Publicado: (2021) -
Malicious Domain Detection Based on K-means and SMOTE
por: Wang, Qing, et al.
Publicado: (2020)