Cargando…
Computational Complexity of Hierarchically Adapted Meshes
We show that for meshes hierarchically adapted towards singularities there exists an order of variable elimination for direct solvers that will result in time complexity not worse than [Formula: see text], where N is the number of nodes and q is the dimensionality of the singularity. In particular,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304036/ http://dx.doi.org/10.1007/978-3-030-50420-5_17 |
Sumario: | We show that for meshes hierarchically adapted towards singularities there exists an order of variable elimination for direct solvers that will result in time complexity not worse than [Formula: see text], where N is the number of nodes and q is the dimensionality of the singularity. In particular, we show that this formula does not change depending on the spatial dimensionality of the mesh. We also show the relationship between the time complexity and the Kolmogorov dimension of the singularity. |
---|