Cargando…
Interval Methods for Seeking Fixed Points of Recurrent Neural Networks
The paper describes an application of interval methods to train recurrent neural networks and investigate their behavior. The HIBA_USNE multithreaded interval solver for nonlinear systems and algorithmic differentiation using ADHC are used. Using interval methods, we can not only train the network,...
Autores principales: | Kubica, Bartłomiej Jacek, Hoser, Paweł, Wiliński, Artur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304055/ http://dx.doi.org/10.1007/978-3-030-50420-5_30 |
Ejemplares similares
-
Slow points and adiabatic fixed points in recurrent neural networks
por: Wernecke, Hendrik, et al.
Publicado: (2015) -
Interval methods for solving nonlinear constraint satisfaction, optimization and similar problems: from inequalities systems to game solutions
por: Kubica, Bartłomiej Jacek
Publicado: (2019) -
Dynamical complexity and computation in recurrent neural networks beyond their fixed point
por: Marquez, Bicky A., et al.
Publicado: (2018) -
Seeking Fixed Points in Multiple Coupling Scalar Theories in the $\varepsilon$ Expansion
por: Osborn, Hugh, et al.
Publicado: (2017) -
Pattern Recognition in Neural Networks with Competing Dynamics: Coexistence of Fixed-Point and Cyclic Attractors
por: Herrera-Aguilar, José L., et al.
Publicado: (2012)