Cargando…
Deep Low-Density Separation for Semi-supervised Classification
Given a small set of labeled data and a large set of unlabeled data, semi-supervised learning (ssl) attempts to leverage the location of the unlabeled datapoints in order to create a better classifier than could be obtained from supervised methods applied to the labeled training set alone. Effective...
Autores principales: | Burkhart, Michael C., Shan, Kyle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304056/ http://dx.doi.org/10.1007/978-3-030-50420-5_22 |
Ejemplares similares
-
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning
por: GOLHAR, MAYANK, et al.
Publicado: (2020) -
A Semi-supervised Deep Learning Method for Cervical Cell Classification
por: Zhao, Siqi, et al.
Publicado: (2022) -
A unified view of density-based methods for
semi-supervised clustering and classification
por: Castro Gertrudes, Jadson, et al.
Publicado: (2020) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020)