Cargando…

Modeling Mass and Heat Transfer in Multiphase Coffee Aroma Extraction

[Image: see text] Instant coffee manufacture involves the aqueous extraction of soluble coffee components followed by drying to form a soluble powder. Loss of volatile aroma compounds during concentration through evaporation can lower product quality. One method of retaining aroma is to steam-strip...

Descripción completa

Detalles Bibliográficos
Autores principales: Beverly, David, Lopez-Quiroga, Estefanía, Farr, Robert, Melrose, John, Henson, Sian, Bakalis, Serafim, Fryer, Peter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304076/
https://www.ncbi.nlm.nih.gov/pubmed/32565616
http://dx.doi.org/10.1021/acs.iecr.0c01153
Descripción
Sumario:[Image: see text] Instant coffee manufacture involves the aqueous extraction of soluble coffee components followed by drying to form a soluble powder. Loss of volatile aroma compounds during concentration through evaporation can lower product quality. One method of retaining aroma is to steam-strip volatiles from the coffee and add them back to a concentrated coffee solution before the final drying stage. A better understanding of the impact of process conditions on the aroma content of the stripped solution will improve product design stages. In this context, we present a multiscale model for aroma extraction describing (i) the release from the matrix, (ii) intraparticle diffusion, (iii) transfer into water and steam, and (iv) advection through the column mechanisms. Results revealed (i) the existence of three different types of compound behavior, (ii) how aroma physiochemistry determines the limiting kinetics of extraction, and (iii) that extraction for some aromas can be inhibited by the interaction with other coffee components.