Cargando…

Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China

BACKGROUND: The combination of mulch with N fertilizer application is a common agronomic technique used in the production of rainfed maize (Zea mays L.) to achieve higher yields under conditions of optimum planting density and adequate N supply. However, the combined effects of mulch, planting densi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiukang, Wang, Ge, Turner, Neil C., Xing, Yingying, Li, Meitian, Guo, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304207/
https://www.ncbi.nlm.nih.gov/pubmed/32560674
http://dx.doi.org/10.1186/s12870-020-02477-2
Descripción
Sumario:BACKGROUND: The combination of mulch with N fertilizer application is a common agronomic technique used in the production of rainfed maize (Zea mays L.) to achieve higher yields under conditions of optimum planting density and adequate N supply. However, the combined effects of mulch, planting density, and N fertilizer application rate on plant N uptake and N translocation efficiency are not known. The objective of this study was to quantify the interaction effect of mulch, planting density, and N fertilizer application rate on maize grain yield, N uptake, N translocation, and N translocation efficiency. The experiment was arranged in a randomized complete block design with three factors (2 mulch levels × 2 planting densities × 4 N fertilizer application rates) replicated four times. RESULTS: There was a significant interaction among mulch, plant density, and N fertilizer on maize grain yield, kernel number per cob, N uptake, N translocation, and N translocation efficiency. Averaged over the 3 years of the study, total plant N uptake at silking ranged from 79 to 149 kg N ha(− 1) with no mulch and from 76 to 178 kg N ha(− 1) with mulch. The N uptake at silking in different plant organs ranked as leaf > grain > stem > cob. Averaged across all factors, the highest N translocation was observed in leaves, which was 59.4 and 88.7% higher than observed in stems and ears, respectively. The mean vegetative organ N translocation efficiency averaged over mulch, planting density, and N fertilizer application rate treatments decreased in the order of leaf > stem > cob. CONCLUSIONS: Mulch, planting density, and N fertilizer application rate not only have significant effects on improving maize grain yield and NUE, but also on N uptake, N translocation, and N translocation efficiency. Our results showed clearly that under high planting density, the combination of mulch and moderate N fertilizer application rate was the optimal strategy for increasing maize grain yield and N use efficiency.