Cargando…

Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Atabaki-Pasdar, Naeimeh, Ohlsson, Mattias, Viñuela, Ana, Frau, Francesca, Pomares-Millan, Hugo, Haid, Mark, Jones, Angus G., Thomas, E. Louise, Koivula, Robert W., Kurbasic, Azra, Mutie, Pascal M., Fitipaldi, Hugo, Fernandez, Juan, Dawed, Adem Y., Giordano, Giuseppe N., Forgie, Ian M., McDonald, Timothy J., Rutters, Femke, Cederberg, Henna, Chabanova, Elizaveta, Dale, Matilda, Masi, Federico De, Thomas, Cecilia Engel, Allin, Kristine H., Hansen, Tue H., Heggie, Alison, Hong, Mun-Gwan, Elders, Petra J. M., Kennedy, Gwen, Kokkola, Tarja, Pedersen, Helle Krogh, Mahajan, Anubha, McEvoy, Donna, Pattou, Francois, Raverdy, Violeta, Häussler, Ragna S., Sharma, Sapna, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, ‘t Hart, Leen M., Adamski, Jerzy, Musholt, Petra B., Brage, Soren, Brunak, Søren, Dermitzakis, Emmanouil, Frost, Gary, Hansen, Torben, Laakso, Markku, Pedersen, Oluf, Ridderstråle, Martin, Ruetten, Hartmut, Hattersley, Andrew T., Walker, Mark, Beulens, Joline W. J., Mari, Andrea, Schwenk, Jochen M., Gupta, Ramneek, McCarthy, Mark I., Pearson, Ewan R., Bell, Jimmy D., Pavo, Imre, Franks, Paul W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304567/
https://www.ncbi.nlm.nih.gov/pubmed/32559194
http://dx.doi.org/10.1371/journal.pmed.1003149
_version_ 1783548280103239680
author Atabaki-Pasdar, Naeimeh
Ohlsson, Mattias
Viñuela, Ana
Frau, Francesca
Pomares-Millan, Hugo
Haid, Mark
Jones, Angus G.
Thomas, E. Louise
Koivula, Robert W.
Kurbasic, Azra
Mutie, Pascal M.
Fitipaldi, Hugo
Fernandez, Juan
Dawed, Adem Y.
Giordano, Giuseppe N.
Forgie, Ian M.
McDonald, Timothy J.
Rutters, Femke
Cederberg, Henna
Chabanova, Elizaveta
Dale, Matilda
Masi, Federico De
Thomas, Cecilia Engel
Allin, Kristine H.
Hansen, Tue H.
Heggie, Alison
Hong, Mun-Gwan
Elders, Petra J. M.
Kennedy, Gwen
Kokkola, Tarja
Pedersen, Helle Krogh
Mahajan, Anubha
McEvoy, Donna
Pattou, Francois
Raverdy, Violeta
Häussler, Ragna S.
Sharma, Sapna
Thomsen, Henrik S.
Vangipurapu, Jagadish
Vestergaard, Henrik
‘t Hart, Leen M.
Adamski, Jerzy
Musholt, Petra B.
Brage, Soren
Brunak, Søren
Dermitzakis, Emmanouil
Frost, Gary
Hansen, Torben
Laakso, Markku
Pedersen, Oluf
Ridderstråle, Martin
Ruetten, Hartmut
Hattersley, Andrew T.
Walker, Mark
Beulens, Joline W. J.
Mari, Andrea
Schwenk, Jochen M.
Gupta, Ramneek
McCarthy, Mark I.
Pearson, Ewan R.
Bell, Jimmy D.
Pavo, Imre
Franks, Paul W.
author_facet Atabaki-Pasdar, Naeimeh
Ohlsson, Mattias
Viñuela, Ana
Frau, Francesca
Pomares-Millan, Hugo
Haid, Mark
Jones, Angus G.
Thomas, E. Louise
Koivula, Robert W.
Kurbasic, Azra
Mutie, Pascal M.
Fitipaldi, Hugo
Fernandez, Juan
Dawed, Adem Y.
Giordano, Giuseppe N.
Forgie, Ian M.
McDonald, Timothy J.
Rutters, Femke
Cederberg, Henna
Chabanova, Elizaveta
Dale, Matilda
Masi, Federico De
Thomas, Cecilia Engel
Allin, Kristine H.
Hansen, Tue H.
Heggie, Alison
Hong, Mun-Gwan
Elders, Petra J. M.
Kennedy, Gwen
Kokkola, Tarja
Pedersen, Helle Krogh
Mahajan, Anubha
McEvoy, Donna
Pattou, Francois
Raverdy, Violeta
Häussler, Ragna S.
Sharma, Sapna
Thomsen, Henrik S.
Vangipurapu, Jagadish
Vestergaard, Henrik
‘t Hart, Leen M.
Adamski, Jerzy
Musholt, Petra B.
Brage, Soren
Brunak, Søren
Dermitzakis, Emmanouil
Frost, Gary
Hansen, Torben
Laakso, Markku
Pedersen, Oluf
Ridderstråle, Martin
Ruetten, Hartmut
Hattersley, Andrew T.
Walker, Mark
Beulens, Joline W. J.
Mari, Andrea
Schwenk, Jochen M.
Gupta, Ramneek
McCarthy, Mark I.
Pearson, Ewan R.
Bell, Jimmy D.
Pavo, Imre
Franks, Paul W.
author_sort Atabaki-Pasdar, Naeimeh
collection PubMed
description BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.
format Online
Article
Text
id pubmed-7304567
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73045672020-06-19 Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts Atabaki-Pasdar, Naeimeh Ohlsson, Mattias Viñuela, Ana Frau, Francesca Pomares-Millan, Hugo Haid, Mark Jones, Angus G. Thomas, E. Louise Koivula, Robert W. Kurbasic, Azra Mutie, Pascal M. Fitipaldi, Hugo Fernandez, Juan Dawed, Adem Y. Giordano, Giuseppe N. Forgie, Ian M. McDonald, Timothy J. Rutters, Femke Cederberg, Henna Chabanova, Elizaveta Dale, Matilda Masi, Federico De Thomas, Cecilia Engel Allin, Kristine H. Hansen, Tue H. Heggie, Alison Hong, Mun-Gwan Elders, Petra J. M. Kennedy, Gwen Kokkola, Tarja Pedersen, Helle Krogh Mahajan, Anubha McEvoy, Donna Pattou, Francois Raverdy, Violeta Häussler, Ragna S. Sharma, Sapna Thomsen, Henrik S. Vangipurapu, Jagadish Vestergaard, Henrik ‘t Hart, Leen M. Adamski, Jerzy Musholt, Petra B. Brage, Soren Brunak, Søren Dermitzakis, Emmanouil Frost, Gary Hansen, Torben Laakso, Markku Pedersen, Oluf Ridderstråle, Martin Ruetten, Hartmut Hattersley, Andrew T. Walker, Mark Beulens, Joline W. J. Mari, Andrea Schwenk, Jochen M. Gupta, Ramneek McCarthy, Mark I. Pearson, Ewan R. Bell, Jimmy D. Pavo, Imre Franks, Paul W. PLoS Med Research Article BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915. Public Library of Science 2020-06-19 /pmc/articles/PMC7304567/ /pubmed/32559194 http://dx.doi.org/10.1371/journal.pmed.1003149 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Atabaki-Pasdar, Naeimeh
Ohlsson, Mattias
Viñuela, Ana
Frau, Francesca
Pomares-Millan, Hugo
Haid, Mark
Jones, Angus G.
Thomas, E. Louise
Koivula, Robert W.
Kurbasic, Azra
Mutie, Pascal M.
Fitipaldi, Hugo
Fernandez, Juan
Dawed, Adem Y.
Giordano, Giuseppe N.
Forgie, Ian M.
McDonald, Timothy J.
Rutters, Femke
Cederberg, Henna
Chabanova, Elizaveta
Dale, Matilda
Masi, Federico De
Thomas, Cecilia Engel
Allin, Kristine H.
Hansen, Tue H.
Heggie, Alison
Hong, Mun-Gwan
Elders, Petra J. M.
Kennedy, Gwen
Kokkola, Tarja
Pedersen, Helle Krogh
Mahajan, Anubha
McEvoy, Donna
Pattou, Francois
Raverdy, Violeta
Häussler, Ragna S.
Sharma, Sapna
Thomsen, Henrik S.
Vangipurapu, Jagadish
Vestergaard, Henrik
‘t Hart, Leen M.
Adamski, Jerzy
Musholt, Petra B.
Brage, Soren
Brunak, Søren
Dermitzakis, Emmanouil
Frost, Gary
Hansen, Torben
Laakso, Markku
Pedersen, Oluf
Ridderstråle, Martin
Ruetten, Hartmut
Hattersley, Andrew T.
Walker, Mark
Beulens, Joline W. J.
Mari, Andrea
Schwenk, Jochen M.
Gupta, Ramneek
McCarthy, Mark I.
Pearson, Ewan R.
Bell, Jimmy D.
Pavo, Imre
Franks, Paul W.
Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
title Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
title_full Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
title_fullStr Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
title_full_unstemmed Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
title_short Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
title_sort predicting and elucidating the etiology of fatty liver disease: a machine learning modeling and validation study in the imi direct cohorts
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304567/
https://www.ncbi.nlm.nih.gov/pubmed/32559194
http://dx.doi.org/10.1371/journal.pmed.1003149
work_keys_str_mv AT atabakipasdarnaeimeh predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT ohlssonmattias predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT vinuelaana predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT fraufrancesca predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT pomaresmillanhugo predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT haidmark predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT jonesangusg predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT thomaselouise predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT koivularobertw predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT kurbasicazra predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT mutiepascalm predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT fitipaldihugo predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT fernandezjuan predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT dawedademy predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT giordanogiuseppen predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT forgieianm predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT mcdonaldtimothyj predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT ruttersfemke predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT cederberghenna predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT chabanovaelizaveta predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT dalematilda predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT masifedericode predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT thomasceciliaengel predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT allinkristineh predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT hansentueh predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT heggiealison predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT hongmungwan predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT elderspetrajm predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT kennedygwen predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT kokkolatarja predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT pedersenhellekrogh predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT mahajananubha predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT mcevoydonna predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT pattoufrancois predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT raverdyvioleta predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT hausslerragnas predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT sharmasapna predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT thomsenhenriks predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT vangipurapujagadish predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT vestergaardhenrik predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT thartleenm predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT adamskijerzy predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT musholtpetrab predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT bragesoren predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT brunaksøren predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT dermitzakisemmanouil predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT frostgary predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT hansentorben predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT laaksomarkku predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT pedersenoluf predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT ridderstralemartin predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT ruettenhartmut predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT hattersleyandrewt predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT walkermark predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT beulensjolinewj predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT mariandrea predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT schwenkjochenm predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT guptaramneek predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT mccarthymarki predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT pearsonewanr predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT belljimmyd predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT pavoimre predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts
AT frankspaulw predictingandelucidatingtheetiologyoffattyliverdiseaseamachinelearningmodelingandvalidationstudyintheimidirectcohorts