Cargando…

High Accuracy Terrain Reconstruction from Point Clouds Using Implicit Deformable Model

Few previous works have studied the modeling of forest ground surfaces from LiDAR point clouds using implicit functions. [10] is a pioneer in this area. However, by design this approach proposes over-smoothed surfaces, in particular in highly occluded areas, limiting its ability to reconstruct fine-...

Descripción completa

Detalles Bibliográficos
Autores principales: Morel, Jules, Bac, Alexandra, Kanai, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304704/
http://dx.doi.org/10.1007/978-3-030-50433-5_20
Descripción
Sumario:Few previous works have studied the modeling of forest ground surfaces from LiDAR point clouds using implicit functions. [10] is a pioneer in this area. However, by design this approach proposes over-smoothed surfaces, in particular in highly occluded areas, limiting its ability to reconstruct fine-grained terrain surfaces. This paper presents a method designed to finely approximate ground surfaces by relying on deep learning to separate vegetation from potential ground points, filling holes by blending multiple local approximations through the partition of unity principle, then improving the accuracy of the reconstructed surfaces by pushing the surface towards the data points through an iterative convection model.