Cargando…
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
The interactions between humans and their environment, comprising living and non-living entities, can be studied via Social Network Analysis (SNA). Node classification, as well as community detection tasks, are still open research problems in SNA. Hence, SNA has become an interesting and appealing d...
Autores principales: | Molokwu, Bonaventure C., Shuvo, Shaon Bhatta, Kar, Narayan C., Kobti, Ziad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304720/ http://dx.doi.org/10.1007/978-3-030-50433-5_15 |
Ejemplares similares
-
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia
por: Yu, Xiang, et al.
Publicado: (2021) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Path-enhanced graph convolutional networks for node classification without features
por: Jiao, Qingju, et al.
Publicado: (2023) -
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023)